$$
B=V\left(\left\{Y_{i_{1}}\left(x_{2}-a_{i_{2}} x_{3}\right)-Y_{i_{2}}\left(X_{1}-\alpha_{i_{1}} x_{3}\right) \mid i=1, \cdots x\right\}\right) \subseteq \mathbb{P}^{2} \times \mathbb{P}^{1} \times \ldots \times \mathbb{P}^{\prime}
$$

B
\mathbb{P}^{2}

study the behavior of π around some pt $Q \in E_{i}$.
Fact: locally $\pi: B \rightarrow \mathbb{P}^{2}$ looks like $\psi: A^{2} \rightarrow A^{2}\left(\right.$ in $\left.s 7_{2}\right)$ i. $\forall Q \in B \quad \exists V^{\prime} \operatorname{\omega } B X W^{\prime} \cos A^{2} s t$.

Pf: W1OG: $i=1$ and $P_{1}=[0: 0: 1] \quad Q=[\lambda: 1] \in \mathbb{P}_{i}^{\prime} \quad \lambda \in k$

$$
\begin{aligned}
& \varphi_{3}: \mathbb{A}^{2} \xlongequal{\leftrightharpoons} U_{3} \Leftrightarrow \mathbb{P}^{2} \quad(x, y) \mapsto[x: y: 1] \\
& V:=U_{3} \mid\left\{p_{2}, \cdots, p_{t}\right\} \Rightarrow p_{1} \\
& W:=\varphi_{3}^{-1}(V) \subset \mathbb{A}^{2} \\
& \psi=\mathbb{A}^{2} \rightarrow \mathbb{A}^{2} \quad(x, z) \mapsto(x, x z) \\
& w^{\prime}:=\psi^{-1}(w) \\
& \varphi: W^{\prime} \rightarrow \mathbb{P}^{2} \times \mathbb{P}^{\prime} \times \cdots \times \mathbb{P}^{\prime} \\
& (x, z) \mapsto\left([x: x z: 1],[1: z], f_{2}([x: x z: 1]), \cdots, f_{x}([x ; z:=1))\right.
\end{aligned}
$$

Then φ is a morshism with image

$$
V^{\prime}=B\left(\left(\bigcup_{i>1} E_{i} \cup V\left(X_{3}\right) \cup V\left(Y_{11}\right)\right) \ni Q\right.
$$

and satisfies $\pi \circ \varphi=\varphi_{3} \circ \psi$.

The inverse morphion of φ is (the restriction to V^{\prime} of)

$$
\begin{aligned}
\mathbb{P}^{2} \times \ldots \times \mathbb{T}^{\prime} \backslash V\left(x_{3} y_{11}\right) & \longrightarrow \mathbb{A}^{2} \\
\left(\left[x_{1}: x_{2}: x_{3}\right],\left[y_{11} ; y_{12}\right], \cdots\right) & \longmapsto\left(x_{1} / x_{3}, y_{2} / y_{11}\right)
\end{aligned}
$$

$C \subset \mathbb{P}^{2}$ ir curve.
$c_{0}:=C \cap \cup, \quad C_{0}^{\prime}:=\pi^{-1}\left(c_{0}\right) \subset G$
$c^{\prime}:=$ closure of c_{0}^{\prime} in B.
$\pi \leadsto f: c^{\prime} \rightarrow c \quad$ (binational monhhism)
f looks like the affine map in $\$ 7.2$.

Prop 1. $C=$ irs. prog. plane curve.
Suppose all multiple pts of C are ordinary. Then \exists birational morphism $f=C^{\prime} \rightarrow C$
t nonsingular projective.
Pf: apply (8) $\Rightarrow f: c^{\prime} \rightarrow c$ step 2 in $\$ 7.2 \Rightarrow c^{\prime}$ nonsingular.
\exists ordinary projective plane curve $\in[c]$
$\Rightarrow \exists$ nonsingular projective curve $\in[c]$.
The next question is: can we find an ordinary pry plane curve in $[c]$?

A力 answer this, we need study qu transformations.

Standard quadratic transformation

$$
Q: \mathbb{P}^{2} \cdots \mathbb{P}^{2}
$$

$$
[x: y: z] \rightarrow[y z: x z: x y]
$$

- Q is defied on $\mathbb{P}^{2} \mid\left\{p, P^{\prime}, P^{\prime \prime}\right\}$
- $Q \cdot Q=i d$ on $V=\mathbb{P}^{\prime} \backslash\left(L \cup L^{\prime} \cup L^{\prime \prime}\right)$

On V, Q is also given by
exceptional lines

- $C \subseteq \mathbb{P}^{2}$ ir. curve ($C \neq$ exceptional lin)

$$
\begin{aligned}
& \Rightarrow \cup \leftrightarrow c \cap \cup \leftrightarrow c \\
& Q^{-1}(c \cap U)=Q(c \cap U) \leftrightarrow U
\end{aligned}
$$

- $c^{\prime}:=$ closure of $Q^{-1}(c \cap U)$ in \mathbb{P}^{2}

$$
\Rightarrow Q: C^{\prime}\left\{\left\{p_{1}, p_{1}^{\prime} p^{\prime \prime}\right\} \rightarrow C \quad \&\left(C^{\prime}\right)^{\prime}=C .\right.
$$

$F \in k[x, Y, z] \quad C=\{F=0\} \quad n=\operatorname{deg}(F)$
$F Q:=F(Y Z, X Z, X Y) \leftarrow$ form of deg $2 n$.
t algebraic transform of F

$$
m_{p}(c)=r, \quad m_{p^{\prime}}(c)=r^{\prime}, \quad m_{p^{\prime \prime}}(c)=r^{\prime \prime} \Rightarrow F^{Q}=z^{r} r^{r^{\prime}} x^{r^{\prime \prime}} F^{\prime}
$$

Fact: $V\left(F^{\prime}\right)=C^{\prime}$

excellent position

Fact: C in excellent position $\Rightarrow C^{\prime}$ has following multiple pts
a) $C^{\prime} \cap \cup \stackrel{1: 1}{\longleftrightarrow} C \cap \cup \quad$ (mule. pts)
preserves multiple prs, mubiplicity, ordinary multi. pts.
b) $P, P^{\prime}, p^{\prime \prime}$ ordinary on C^{\prime} with multiplication $n, n-r, n-r$
c). \# non-fundamental pas on $C^{\prime} \cap L^{\prime}$ or on $C^{\prime} \cap L^{\prime \prime}$
d). Let $\left\{P_{1}, \cdots, P_{s}\right\}=$ non-fundaneral pts on $C^{\prime} \cap L$ Then

$$
\begin{aligned}
& m_{p_{\bar{i}}}\left(c^{\prime}\right) \leqslant I\left(p_{i}, C^{\prime} \cap L\right) \\
& \sum I\left(p_{i}, C^{\prime} \cap L\right)=r
\end{aligned}
$$

$$
r_{i}=m_{p_{i}}\left(c^{\prime}\right)
$$

$\$ 7.5$ nonsingular models of curves

Thm $3 c=$ proj curve. Then \exists ! nonsingula porj. curve X \& birational mophion $f: x \rightarrow C$.
τ nonsingular model of C
! means: if $f^{\prime}: x^{\prime} \rightarrow x$ is another one, then

pf: S7.). corl \Rightarrow uniqueness.
existence:
cor in $56.6 \Rightarrow$ plane curve $C^{\prime} \xrightarrow{-}$ biranow C
Thm2 \& $7.4 \Rightarrow$ plane curve will only ordinany mula. pts.

$$
c^{\prime} \xrightarrow{\text { biramid }} C
$$

Rup1 $\$ 7.3 \Rightarrow$ nonsingula curve $x \stackrel{\text { binfurn }}{\rightarrow} C$

$$
\operatorname{cor} 1 \S 7.1 \Rightarrow x \xrightarrow{\text { biratof }} C
$$

sujjective $=1^{\circ} \quad C=$ plane curve Prob 7.13

$$
\left.\begin{array}{l}
\text { Pwob } 7.13 \\
\operatorname{pop} \mid \$ 7.3
\end{array}\right\} \Rightarrow x \rightarrow c
$$

2° general. $\exists C \xrightarrow{g} C_{1}$ (projplare curre) St

$$
g^{-1}(g(p))=\{p\} \quad(\text { Prob } 7.43)
$$

